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The search for predictions of species diversity across environmental gradients has
challenged ecologists for decades. The humped-back model (HBM) suggests that plant
diversity peaks at intermediate productivity; at low productivity few species can tolerate
the environmental stresses, and at high productivity a few highly competitive species
dominate. Over time the HBM has become increasingly controversial, and recent studies
claim to have refuted it. Here, by using data from coordinated surveys conducted
throughout grasslands worldwide and comprising a wide range of site productivities, we
provide evidence in support of the HBM pattern at both global and regional extents. The
relationships described here provide a foundation for further research into the local,
landscape, and historical factors that maintain biodiversity.

D
espite a long history of research, the nature
of basic patterns between environmental
factors and biological diversity remain
poorly defined. A notable example is the
relationship between plant diversity and

productivity, which has stimulated a long-running
debate (1–6). A classic hypothesis, the humped-
back model (HBM) (7), states that plant species
richness peaks at intermediate productivity, tak-
ing above-ground biomass as a proxy for annual
net primary productivity (7–9). This diversity peak
is driven by two opposing processes. In unproduc-
tive ecosystems with low plant biomass, species
richness is limited by abiotic stress, such as in-
sufficient water and mineral nutrients, which
few species are able to tolerate. In contrast, in the
productive conditions that generate high plant
biomass, competitive exclusion by a small num-
ber of highly competitive species is hypothesized
to constrain species richness (7–9). Other mech-
anisms that may explain the unimodal relation-
ship between species richness and biomass include
disturbance (7, 10), evolutionary history and dis-
persal limitation (11, 12), and the reduction of total
plant density in productive communities (13).
Since its initial proposal, a range of studies

have both supported and rejected the HBM, and
three separate meta-analyses reached different

conclusions (14–17). Although this inconsistency
may indicate a lack of generality of the HBM, it
may instead reflect a sensitivity to study meth-
odology, including the plant community types
considered, the taxonomic scope, the range of
site productivities sampled, the spatial grain and
extent of analyses (17, 18), and the particular
measure of net primary productivity used (19).
The questions therefore remain open as to what
the form of the relationship between diversity
and productivity is, and whether theHBM serves
as a useful and general model for grassland eco-
system theory and management.
We quantified the form and the strength of the

richness-productivity relationship by using glob-
ally coordinated surveys (20), which yielded scale-
standardized data and were distributed across
30 sites in 19 countries and six continents (Fig. 1).
Collectively, our samples spanned a broad range
of biomass production (from 2 to 5711 gm−2) and
grassland community types, including natural and
managed (pastures and meadows) grasslands
over a wide range of climatic zones (temperate,
Mediterranean, and tropical), and altitudes (low-
land to alpine) (table S1). Our protocol involved
sampling 64 1-m2 quadrats within 8-m-by-8-m
grids (18, 21). At each site, between 2 and 14 grids
were sampled, thus resulting in 128 to 896 quad-

rats per site. In each 1-m2 quadrat, we identified
and counted all plant species and harvested above-
ground biomass and plant litter. Litter production
is a function of annual net primary productivity
in grasslands and can have profound effects on
the structure and functioning of communities,
from altering nutrient cycling to impeding vege-
tative growth and seedling recruitment (22, 23),
thereby also playing a major role in driving com-
munity structure. Indeed, the HBM was origi-
nally defined in terms of live biomass plus litter
material (7, 8). Most of the sites in our survey
were subject to some formofmanagement, usually
livestock grazing or mowing. In this respect,
our sites are representative ofmost of theworld’s
grasslands. Our sampling was conducted at
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least 3 months after the last grazing, mowing, or
burning event and at the annual peak of live bio-
mass, which, when coupledwith litter, constitutes
a reliable measure of annual net aboveground pro-
duction in herbaceous plant communities (24).
Our results strongly support the HBM of the

plant richness-productivity relationship. By using
a global-extent regression model (N = 9631 1-m2

quadrats) (21), we found that plant richness
formed a unimodal relationship with productivity
(Fig. 2A) that is characterized by a highly sig-
nificant concave-down quadratic regression [neg-
ative binomial generalized linear model (GLM);
Table 1]. This relationship was not sensitive to
the statistical model used; the hump-backed re-
lationship was also evident when we used a neg-
ative binomial generalized linear mixed model
(GLMM) that accommodated the hierarchical
structure of our sampling design (grids nested
within sites; Table 1 and fig. S1).
At a sampling grain of 1 m2, 19 of 28 site level

analyses (68%) yielded significant concave-down
relationships (table S2 and Fig. 2A). This con-
trastsmarkedly with the results of Adler et al. (1),
who found only 1 of their 48 within-site analyses
to be significantly concave-down. We also found
the form of the productivity-diversity relation-
ship to be robust to sampling grain: by using
grains of 1 m2 up to 64 m2, each time main-
taining a global extent, we consistently found a
significant concave-down relationship, although
the proportion of variation explained tended to
decrease with increasing grain (fig. S2).
The HBM predicts a boundary condition or

upper limit to diversity that, in any given site,

may not be realized for a variety of reasons (18).
Consistent with this view, our global-extent as-
sociation is characterized by a significant concave-
downquantile regression (95th percentile) (Table
1), below which considerable scatter exists (Fig.
2A). This pattern was also insensitive to the
statistical method used; a hierarchical Bayesian
analysis that accommodated the nested sampling
design and that enabled both the mean and the
variance of species richness to be modeled more
accurately against (log-transformed) biomass also
revealed a significant 95th percentile quantile
regression (fig. S3). Likewise, we found a signifi-
cant, concave-downquantile regression (95th per-
centile) between the maximum (quadrat-scale)
richness foundwithin a grid and the total biomass
of the same quadrat (Table 1 and fig. S4). Each of
these approaches to characterizing boundary con-
ditions suggests the existence of a “forbidden
space,”wherein high productivity precludes high
local diversity. Furthermore, they suggest that
extremely low-productivity sites rarely accommo-
date high diversity.
Why do our data show a hump-backed rela-

tionship, whereas those of Adler et al. (1) and
related studies (4, 6), do not? One possibility is
that data limitations can thwart detection of the
HBM (18). For example, the data used by Adler
et al. differed from ours in the following poten-
tially important ways: (i) They exhibited a maxi-
mumlivebiomassofonly 1535g−2 (ourswas3374g−2),
(ii) litter was not included within the calculation
of biomass, and (iii) sample sizewas limited to 30
quadrats per site (ours ranged from 128 to 894
quadrats per site; table S1). We conducted a form

of sensitivity analysis in which we reran our sta-
tistical analyses using random subsets of our
data that were constrained to exhibit similar
properties to those of the Adler et al. data set.
Specifically, after limiting the overall data set to
less than 1535 g−2 and excluding litter, we ran-
domly selected 30 quadrats per site 500 times,
each time conducting the within-site regression
analyses (N = 30 for each of the 28 site-level
GLMs conducted per subsampling iteration). For
each iteration, we also calculated the average
range of biomass spanned by the 28 site-level
relationships. Across the 500 iterations (one
example set of outcomes is shown in Fig. 2B),
the average proportion of significant concave-
down, within-site regressions was 0.31 ± 0.003
(SEM), significantly less than our observed pro-
portion of 0.68 (fig. S5). Moreover, when signif-
icant concave-down relationships were detected,
they tended to span a broader range of biomass
than the remaining forms (including nonsignifi-
cant relationships). Specifically, in 458 of the 500
iterations (92%), the mean biomass range of the
concave-down regressions was larger than the
mean of the remaining forms’ biomass ranges
(binomial test: P < 2.2 × 10−16). Last, the 48
within-site analyses of Adler et al. spanned, on
average, a live biomass range of 428.7 g−2 ± 38.36
(range of 89 to 1217 g−2). This is (i) less than half
of the average range encompassed by our 28 site-
level analyses shown in Fig. 2A (mean= 1067.5 g−2 ±
140.63; rangeof 286 to 3256g−2) and (ii) almost 50%
narrower than the smallest average biomass range
encompassed by our 500 random subset analyses
(627.4 g−2) (fig. S6). Taken together, these findings
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Fig. 1. Site locations. Locations of the geographic centroids of the 30 study sites, which include 151 sampling grids. Some points overlap and are therefore
indistinguishable. Additional site details are provided in table S1. Map is displayed using the Robinson projection.
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strongly suggest that we were able to detect
more concave-down relationships because of the
greater sample sizes and biomass ranges in our
analysis.
It has been suggested (2) that some previous

studies, including Adler et al. (1), failed to support
the HBM because they excluded litter. Although
we do find a significant concave-down relation-
ship at the global extent using only live biomass
(Table 1), a comparison of models using biomass
versus biomass and litter (both N = 9,631) shows

total biomass to provide a far better fit [residual
deviance = 10,105 (live) versus 10,037 (total); Vuong
z-statistic for comparing non-nestedmodels: –13.4;
P < 0.001]. It has also been suggested that previ-
ous surveys failed to adequately represent high-
productivity communities. Indeed, our high-biomass
quadrats (1011 samples were over 1000 g−2, ~10%
of the 9631 samples; maximum of 5711 g−2) con-
tributed considerably to the right-hand part of
the fitted humped-back regression. This could be
a reason why the data set of Adler et al. (1) (in

which only 0.5% of samples were over 1000 g−2

with a maximum of 1534 g−2) failed to support
the HBM. Our results therefore show that a test
of the HBM in herbaceous plant communities
yields the expected pattern when it is robust and
comprehensive, spans a wide range of biomass
production (from 1 to at least 3000 dry g−2 year−1),
and provides sufficient replication of quadrats
along the productivity gradient.
Competitive exclusion has been cited as the

primary factor driving low species numbers at
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Table 1. Regression results. Results of regression analyses of the relationship between productivity and species richness, measured at a global extent and a
sampling grain of 1-m2 quadrat. Total biomass = live biomass + litter biomass. All linear and quadratic term coefficients were highly significant (P < 0.001).

Productivity measure Type of regression Sample size Test of model fit Intercept

estimate T SEM

Linear term

coefficient T SEM

Quadratic term

coefficient T SEM

Total biomass negative binomial

GLM (log-link function)

9631

quadrats

likelihood ratio

stat. = 1602.2
–2.52 ± 0.235 4.69 ± 0.186 –1.04 ± 0.037

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Total biomass negative binomial

GLMM (log-link function)

random effects:

grid nested in site

9631

quadrats

151 grids

28 sites

likelihood ratio

stat. = 114.0
0.91 ± 0.191 1.33 ± 0.133 –0.29 ± 0.028

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Total biomass quantile

(95th percentile)

9631 quadrats pseudo-F

statistic = 179.1
–12.9 ± 7.159 45.6 ± 5.833 –11.3 ± 1.173

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Live biomass negative binomial GLM

(log-link function)

9644 quadrats likelihood ratio

stat. = 950.3
–2.03 ± 0.212 4.27 ± 0.178 –0.96 ± 0.037

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Fig. 2. Biomass production as a function of species richness. (A)
Biomass production-species richness relationships for 28 study sites.
Solid black line indicates significant quantile regression (95th percentile)
of overall relationship (quadratic coefficient P < 0.001; N = 9631 quadrats).
Dashed black line, significant negative binomial GLM (quadratic coefficient
P < 0.001; N = 9631). Colored lines indicate significant GLM regressions
(Poisson or quasi-Poisson), with N ranging from 128 to 894 quadrats.

(Inset) The frequencies of each form of relationship observed across study
regions. NS, not significant. (B) Same as (A) but the results are derived
from the analysis of an example, random subsample of the complete data
set that satisfies the following criteria: litter biomass excluded, quadrats with
biomass >1534 g−2 excluded, and including 30 (randomly selected) quadrats
per site (total N = 840). These criteria match the characteristics of the data
set used by Adler et al. (1).
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high plant biomass (7, 8, 25). However, in the
case of nitrogen addition the negative relation-
ship between productivity and species richness
has been shown to diminish over time [(26), but
see (27, 28)]. It may be that low species richness
in high-productivity conditions arises in part be-
cause most such habitats are anthropogenic, and
there are few species in the local pool adapted to
these conditions (11, 12). If so, it is possible that
species will eventually immigrate from distant
pools, so that the right-hand part of the hump
will then flatten out.
We have shown a global-scale concave-down

unimodal relationship between biomass produc-
tion and richness in herbaceous grassland com-
munities. However, the original HBM (7) is vaguely
articulated by the standards of modern ecological
theory, and it is clear that more work is needed
to determine the underlying causal mechanisms
that drive the unimodal pattern (1, 6, 17, 18). We
recognize that, in our study and many others,
productivity accounts for a fairly low proportion
of the overall variation in richness and thatmany
other drivers of species richness exist (28–30).
Accordingly, we echo the call of Adler et al. (1) for
additional efforts to understand the multivariate
drivers of species richness.
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Reverse glacier motion during
iceberg calving and the cause of
glacial earthquakes
T. Murray,1* M. Nettles,2 N. Selmes,1 L. M. Cathles,3 J. C. Burton,4 T. D. James,1

S. Edwards,5 I. Martin,5 T. O’Farrell,6 R. Aspey,6 I. Rutt,1 T. Baugé7

Nearlyhalf ofGreenland’smass lossoccurs through icebergcalving, but thephysicalmechanisms
operating during calving are poorly known and in situ observations are sparse.We show that
calving at Greenland’s Helheim Glacier causes a minutes-long reversal of the glacier’s horizontal
flow and a downward deflection of its terminus.The reverse motion results from the horizontal
force caused by iceberg capsize and acceleration away from the glacier front.The downward
motion results from a hydrodynamic pressure drop behind the capsizing berg, which also causes
an upward force on the solid Earth.These forces are the source of glacial earthquakes, globally
detectable seismic events whose proper interpretation will allow remote sensing of calving
processes occurring at increasing numbers of outlet glaciers in Greenland and Antarctica.

O
ne-third to one-half of Greenland’s total
mass loss occurs through iceberg calving
at the margins of tidewater-terminating
glaciers (1, 2). Recent rapid changes in glacier
dynamics are associated with increased

calving rates (3–5) and increased rates of glacial
earthquakes (6). At large glacierswithnear-grounded
termini, calving typically occurs when buoyancy
forces cause icebergs that are the full thickness of
the glacier to capsize against the calving front (6–9).
This type of calving is associated with glacial
earthquakes (6, 7, 10), long-period seismic emis-
sions of magnitude ~5 that are observed globally
(11). These earthquakes have expanded north-
ward and increased sevenfold in number during

the past two decades (6, 12, 13), tracking changes
in glacier dynamics, the retreat of glacier fronts,
and increased mass loss (6, 14). Buoyancy-driven
calving represents an increasingly important source
ofdynamicmass loss (6–8) as glacier fronts through-
out Greenland have retreated to positions near
their grounding lines (15). However, because of
the difficulty of instrumenting the immediate near-
terminus region of these highly active glaciers, few
direct observations of the calving process are avail-
able, limiting development of the deterministic
calving models required for improved understand-
ing of controls on dynamic ice-mass loss. Detailed
knowledge of the glacial earthquake source would
allow quantification of calving processes for a large
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